Explore this course:

    Applications for 2024 entry are now open. Apply now or register your interest to hear about postgraduate study and events at the University of Sheffield.

    MSc
    2024 start September 

    Biodiversity and Conservation

    School of Biosciences, Faculty of Science

    Develop fundamental knowledge about major conservation issues and their human and environmental drivers, including urbanisation, tropical logging, marine plastics, and the balance between sustainable food production and biodiversity.
    Students conducting field work in the Peak District

    Course description

    This MSc course prepares you for a career protecting biodiversity in a range of natural, agricultural and urban ecosystems around the world. Throughout your course, you'll be in the field learning about conservation issues and the constraints posed by budgets, policy and legislation.

    Fieldwork will form a large part of your learning. In our Field Biology module you'll have the opportunity to embark on exciting fieldwork to gain hands-on experience and understand the challenges faced in real-world conservation projects.

    You'll receive training in the principles of experimental design and data collection in an area of outstanding conservation and biodiversity interest, equipping you with the key skills to plan and manage your own conservation projects.

    You'll develop an understanding of how environmental change can impact biodiversity and how the effective management of ecosystems can positively impact both biodiversity and the ecosystem itself.

    You’ll conduct an independent research project, spending three months researching an area of biodiversity or conservation that matches your future career aspirations. You could be field-based, lab-based or complete a computational data-driven project, tackling topics such as urbanisation, ecosystem services, tropical deforestation, and marine conservation.

    Example research projects include:

    • The Peak District: a study system for biodiversity and management
    • Effects of increased CO2 on ecosystems
    • Traits in space and time: mobilising biodiversity data for conservation, macroecology, and macroevolution
    • Logging in tropical forests: a conservation and ecological study system

    Modules

    A selection of modules are available each year - some examples are below. There may be changes before you start your course. From May of the year of entry, formal programme regulations will be available in our Programme Regulations Finder.

    Core modules:

    Advanced Data Handling and Analysis

    The aim of this module is to provide students with advanced training in the use of statistical methods and computers to explore, visualise, analyse and present biological data. Advanced principles of programming for data analysis, data interpretation and statistical analysis, and graphical presentation are stressed. The course is based on the statistical programming language R, and the Integrated Development Environment RStudio. Students will study a choice of two specialist modules selected to support student-specific interests and requirements. In addition, they will be guided through the process of making sense of real world, messy data, developing workflows to tidy data, derive research questions, and they will write a data story using the simple markdown language.

    15 credits
    Field Biology

    The broad theme of this course is to investigate the biodiversity of ecosystems and how landscapes can be sustainably managed to deliver on multiple ecosystem service goals. The focus will be on tropical ecosystems with a residential field course in The Gambia, or on temperate ecosystems in the Sheffield region including the Peak District National Park. In a series of site visits students will learn about issues relevant to their programme, which may include the habitats, wildlife, agricultural systems, ecosystem service, and broader human context of the landscape. They will gain experience in a range of appropriate methods for data collection, which may include collection of samples and/or analysis of samples in a laboratory. Applying this knowledge, they will identify a research question in a group, and present this to the rest of the course. Students will develop this into a short group field project. They will then use independent research to generate and analyse data and to place it in the context of previous published work from the scientific literature. The module will develop subject-specific knowledge, as well as skills in experimental design, group working, critical thinking, and writing.

    15 credits
    Literature Review

    The literature review requires the student to write a critical review of a biological topic of choice. The literature review will involve extensive reading of original research papers, reviews and books together with information extracted from other media. The student will be required to critically analyse hypotheses in the field and critically analyse the quality of the evidence used to support them. Where controversies exist the student should be prepared to indicate which side has the stronger case. The literature review should also identify gaps in our current knowledge and understanding and make suggestions for the future developments in the field.

    15 credits
    Advanced Scientific Skills

    This module builds on existing, and further develops, generic scientific skills to equip postgraduate taught students with strong competences in presenting and reporting their research work using written and oral formats, in analysing data and the scientific literature, and in acquiring and extending their critical analysis skills. Teaching will be delivered using a blended approach with a combination of lectures, workshops, tutorials and seminars together with independent study and on-line teaching.

    Taught throughout the academic year, the module will be articulated around three units addressing: 

    Unit 1) Scientific presentation skills. In this unit, students will explore how to develop their academic (writing and oral) presentation skills. Some of the topics taught may include how to formulate a research question and hypothesis, how to find information, and how to structure a scientific essay or report. Students will learn how to communicate effectively their research to a scientific, as well as lay, audience. Emphasis will be placed on short oral communications and poster preparation and presentation.  The learning objectives will be acquired through lectures, workshops, tutorials and independent study.

    Unit 2) Critical analysis skills. This unit prepares students to develop their ability to analyse and appraise the scientific value of the published and unpublished literature. Workshops and lectures will introduce students to the process of critical appraisal of scientific work. 

    Unit 3) Statistics and data analysis skills. In this unit, students will learn methods to gather and analyse large datasets. In particular, workshops and lectures will teach students the basics of R coding and statistics for application in biosciences. The unit may also deliver other forms of data analysis relevant to the programme of study. Teaching within this unit will be delivered mainly through on-line material, lectures and workshops. Independent study will be essential to complete the acquisition of skills.

    15 credits
    Individual Research Project

    This module gives students the opportunity to develop to high level skills relevant to a career in research or management. Based on their interests and career aspirations, students will conduct either a practical laboratory or field-based research project, a computational project, a theoretical modelling project or a systematic literature review or other substantial critical review. There is the potential to work with external organisations. A common element is the independent production of a piece of research, with guidance from an academic supervisor in the department. Students will engage with their supervisor(s) and their team to shape and design their own research and conduct this largely independently with the guidance provided. Projects will be allocated to students, matching available supervisor's and student's interests. The project write-up may be targeted to a specific audience, either academics or a group of specialists, and should follow the according format in terms of structure. The student's research is further presented in an oral form to fellow students and/or academics/experts. 

    60 credits

    Optional modules:

    Global Conservation Issues

    This course provides an overview of the principles of conservation biology through lectures which focus on major real-world conservation issues and specific case studies. Critical thinking is encouraged throughout as students are encouraged to understand the complexity of conservation issues behind simple narratives. Students will further develop their skills in accessing, interpreting and synthesising both the primary scientific literature and official 'grey' literature in the field of conservation, as they independently produce a policy briefing on a major conservation issue. This will also give them insights into the science-policy interface, and the skills of writing for policy makers.

    15 credits
    Agricultural Ecology in a Changing World

    This unit will introduce the concept of agriculture as an ecological system and explore agriculture in the context of global change. Specifically, this unit will consider the value of biodiversity in agricultural ecosystems, the role of ecosystem services in the sustainability of food production and the vulnerabilities of agriculture to a changing climate.

    15 credits
    Biodiversity in Space and Time

    Biodiversity varies enormously from place to place, from hyperdiverse systems such as tropical rainforests to more species-poor systems in polar regions. The evolution of diversity has also not occurred at a constant rate, with bursts of diversification punctuating periods of more stability. As a result, not all areas are equal, and not all species are too: some represent far more unique evolutionary history than others. This module shows how these large-scale patterns can be studied using the methods of macroecology and macroevolution, and will provide both theory and practical training in how to quantify diversity in space and time.

    15 credits
    Global Sustainability

    This course examines the historical, social, cultural and political dimensions of sustainability, focusing on food production and natural resource management on the land and in the oceans. Students will learn how key historical developments led to sustainability issues, how geopolitics perpetuates these in the modern world, and how an understanding of these issues can help us to develop more sustainable ways to live in future. Learning will be achieved through lectures and videos, independent study and classroom discussion sessions.

    15 credits
    Research Methods in Avian Biodiversity and Conservation

    To study, monitor and conserve birds effectively, a range of sampling techniques and approaches are required. This module will provide students with both theory and practical training in a range of modern avian sampling techniques, such as specimen handling and curation, morphometrics and imaging, acoustic monitoring, DNA extraction and analysis, geographic range mapping, and point counts. Students will emerge with a broad skills-set of practical and computational sampling techniques that can be readily deployed in a wide range of avian-focused academic and applied contexts.

    15 credits

    The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption.

    Open days

    An open day gives you the best opportunity to hear first-hand from our current students and staff about our courses.

    Find out what makes us special at our next online open day on Wednesday 17 April 2024.

    You may also be able to pre-book a department visit as part of a campus tour.Open days and campus tours

    Duration

    1 year full-time

    Teaching

    You’ll learn through a combination of fieldwork, laboratory classes, lectures, seminars and problem-solving classes.

    Your independent research project will last for up to three months where you’ll be working alongside academic staff and professional scientists. This will give you first-hand experience of designing your own experiments, analysing results, problem solving and culminating in you presenting your findings to colleagues.

    Assessment

    Most assessment is through coursework with some written examinations. Your assessment includes, but is not limited to, essays, extended project reports, policy briefing notes, online statistics exams, oral presentations and written grant proposals.

    Your career

    With first-hand experience of global conservation issues across animal and plant biodiversity, you'll be well equipped to pursue a range of career opportunities in policy making, research and academia implementing positive change in this area.

    Previous graduates of this course are now working as:

    • Peatland Discovery Officer, Nottinghamshire Wildlife Trust
    • Ecologist, SLR Consulting
    • Associate Programme Officer, United Nations EP-WCMC
    • Field Biologist, Atlantic Marine Conservation Society

    If you choose to continue your research training, graduates will be well equipped to pursue PhDs in ecology, evolution and conservation and beyond and we have alumni currently studying for PhDs and researching Agroecology and the Impacts of Pesticides on Aquatic Plants.

    By choosing the School of Biosciences for your postgraduate study you'll join our global alumni network, where 93% of our biosciences graduates are employed in life sciences or related fields across the globe. Explore our interactive map of graduate destinations:

    Department

    School of Biosciences

    Firth Court quad

    The School of Biosciences brings together more than 100 years of teaching and research expertise across the breadth of biology.

    It’s home to over 120 lecturers who are actively involved in research at the cutting edge of their field, sharing their knowledge with more than 1,500 undergraduate and 300 postgraduate students. 

    We carry out world-leading research to address the most important global challenges such as food security, disease, health and medicine, ageing, energy, and the biodiversity and climate crises.

    Our expertise spans the breadth and depth of bioscience, including molecular and cell biology, genetics, development, human physiology and pharmacology through to evolution, ecology, biodiversity conservation and sustainability. This makes us one of the broadest and largest groupings of the discipline and allows us to train the next generation of biologists in the latest research techniques and discoveries.

    Entry requirements

    Minimum 2:2 undergraduate honours degree in biological sciences or a related subject.

    We also consider a wide range of international qualifications:

    Entry requirements for international students

    Overall IELTS score of 6.5 with a minimum of 6.0 in each component, or equivalent.

    Pathway programme for international students

    If you're an international student who does not meet the entry requirements for this course, you have the opportunity to apply for a pre-masters programme in Science and Engineering at the University of Sheffield International College. This course is designed to develop your English language and academic skills. Upon successful completion, you can progress to degree level study at the University of Sheffield.

    If you have any questions about entry requirements, please contact the department.

    Fees and funding

    Fieldwork

    The cost of all core fieldwork and practical project work is included in your tuition fees, this includes travel and accommodation for any one day field trips and compulsory field courses as well as obligatory safety equipment. Necessary vaccinations and visas required for travel, as well as travel to field sites for research project work, may incur additional costs.

    Apply

    You can apply now using our Postgraduate Online Application Form. It's a quick and easy process.

    Apply now

    Contact

    biosciences-pgt@sheffield.ac.uk
    +44 114 222 2341

    Any supervisors and research areas listed are indicative and may change before the start of the course.

    Our student protection plan

    Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.